2010 INTERNATIONAL WORKSHOP ON ENVIRONMENT AND ENERGY

San Diego, California November 2 - 4, 2010

Synthesis and characterization of functional nanocontainers for active corrosion protection

João Tedim University of Aveiro, Portugal

1. Introduction

Direct incorporation of corrosion inhibitors in coating formulations can lead to several problems:

- -detrimental interaction between inhibitors and coating matrix (technical)
- -constant/spontaneous leaching of inhibitors into the environment (environmental and economical)

Limitation of the coating protective action in time and magnitude

Solution Encapsulation/intercalation of corrosion inhibitors in nanocontainers capable of release-

Micro/nanocontainer + Corrosion inhibitor >= Chromates

Inert, hosting structures
Release mechanisms

Active protection

Low toxicity

Types of containers:

-inorganic, organic, hybrid

Release mechanisms:

- -mechanical impact
- -pH -H₂O
- -presence of aggressive species (e.g. chlorides)

Potential advantages related to this strategy:

- improvement of coating integrity
- smaller amounts of inhibitor required
- development of new value-added products
- comply with environmental law regulations

Layered double hydroxides (LDHs)

$[M^{2+}_{1-x}M^{3+}_{x}(OH)_{2}]A^{n-}_{x/n}\cdot mH_{2}O$

Applications:

Sorbents, Drug-delivery systems, Polymer stabilizers, Heterogeneous catalysis

Silica nanocapsules (SiO₂)

Applications:

Drug-delivery systems

Transport carriers

Nano-reactors

2. Experimental

- Synthesis of LDHs
- -methodologies applied: ion-exchange, calcination-rehydration
- -corrosion inhibitors intercalated: MoO₄²⁻, VO₃⁻, MBT
- Synthesis of SiO₂
- -oil-in-water microemulsion
- -corrosion inhibitor: MBT

Structural/morphological characterization

XRD, SEM, TEM

Release studies

HLPC

Corrosion studies

EIS

3. Struture and morphology

LDHs

Peak positions at low angles: information on the gallery height (anion size and orientation)

LDH-NO₃

SEM

LDH-VO,

- Plate-like morphology
- LDH particles: 200-400 nm diameter and 20-40 nm height

SiO₂

<u>SEM</u>

TEM

- Porous, spherical particles150 nm diameter
- Different core/shell porosities

4. Release studies-LDHs

•The release of NO₃⁻ and MoO₄²⁻ anions is triggered by the presence of chloride anions

- Two release profiles are observed: short (1-2h) and long timescales (>100 h)
 - Profile at short timescales is not sensitive to the concentration of Cl-

4. Release studies-SiO₂

•MBT released preferentially in concentrated NaCl solutions and acidic conditions

5. Assessment of anticorrosion performance-EIS

•EIS spectra for bare AA2024 after 1 day of immersion in 0.05 M NaCl

•The presence of inhibitor determines the (active) protection of the metal substrate

Concluding Remarks

- LDH nanocontainers and SiO₂ nanocapsules were synthesized and corrosion inhibitors successfully intercalated/ encapsulated
- Release studies showed that the optimal conditions for the release of corrosion inhibitors are
 -LDHs (NaCl) -SiO₂ (pH and NaCl)
- The anticorrosion activity in solution depends on the strength of the inhibitor

Future perspectives

- Incorporation of corrosion inhibitor/nanocontainer 'pigments' in coating formulations from aeronautical, automotive and maritime industry
 - -dispersion optimization via surface modification
 - -assessment of the protection performance of the coatings
- Optimization of the nanocontainers for specific applications
 - -action on the release response
 - -screening of inhibitors, combination of inhibitors displaying synergistic effects

Acknowledgments

- Miss Alena Kuznetsova
- Mr Frederico Maia
- Dr Andrei Salak
- Dr Mikhail Zheludkevich
- Prof Mário G. S. Ferreira

European project MUST ref. NMP3-LA-2008-214261